
I S R A E L  J O U R N A L  O F  M A T H E M A T I C S .  Vol. 44. No. 3, 1983 
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BY 
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A B S T R A C I -  

If a separable Banach space X admits a real valued function 4) with bounded 
nonempty support, 4)' is locally l.ipschitzian and if no subspace of X is 
isomorphic to Co, then X admits an equivalent twice Gateaux differentiable 
norm whose first Frechet differential is Lipschitzian on the unit sphere of X. 

I. Introduction 

In this paper  we study some s t ronger  smoothness  propert ies  of real Banach 

spaces. T h r o u g h o u t  the paper  X will be a real Banach space and, usually, we 

consider  spaces which have no subspace isomorphic  to co. (Subspaces are always 

closed.) 

We begin with some notat ion and definitions. A function th : X -~  R, the reals, 

with b o u n d e d  n o n e m p t y  suppor t  is called a b u m p  function.  If there is such a 

funct ion q~ on X with oh' locally uniformly cont inuous  on X (resp., locally 

Lipschitz on X)  then X is said to be locally uniformly smooth (LUS) (resp., 

locally Lipschitz smooth (LLS)). Correspondingly ,  we say X is uniformly smooth 
(US) (resp., Lipschitz smooth (LS)) if the above  propert ies  are global. A b o v e  and 

th roughou t  the paper,  unless otherwise stated, all derivatives are taken in the 

Fr6chet  sense. 

A Banach  space X is of type 2 (see [10]) if there is C < oo such that  for every 

finite set xl ,  XE, . . . , x . ,  

2 =<2~ IIx, ll 2 
.=  Fi=+-I i I i = l  

X is super-reflexive [11] if only reflexive spaces Y are finitely representable  in X, 

that is, for  each e > 0 and finite dimensional  such space F C Y there  is an 
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isomorphism T of F onto T ( F ) C X  such that IITII IIT- ' l l=<l+e.  By the 

Enflt>-James theorem [6], X is super-reflexive if and only if X admits an 

equivalent uniformly rotund norm, that is, limllx. - y. II = 0 whenever x., y. E X, 

{x.} bounded and 

lim[211x. H2 + 211y. 112- IIx. + y .  II 2] = 0 .  

Further, the norm I1-11 is locally uniformly rotund (LUR) provided 

limllx - x .  II = 0 whenever x., x E X and lim [211x II 2 + 21Ix. II 2 -  IIx + x. II 2] = 0. 
Kadec (see [5]) has shown that every separable Banach space admits an 

equivalent LUR norm. (Since we are concerned only about equivalent norms, 

usually we will omit the word equivalent.) x E K, K C_ X and convex, is a 

strongly exposed point [16] of K if there is r E X *  such that f ( x ) =  

sup{f(y): y E K} and if x. E K, l imf(x,)  = f (x) ,  then l i m l l x .  - x II = 0. 

2. Preliminary results 

2.1 PROPOSITION. If X is a Banach space satisfying : 

(i) X admits an LUR norm; 

(ii) X is LUS (resp., LLS); 

(iii) No subspace of X is isomorphic to Co. 

Then X is US (resp., LS). 

In the proof we will use the following two lemmas. 

2.2 LEMMA. If I1" II is an LUR norm on X and K C X is compact, then for each 

e > 0 there is ~ > 0 such that for every finite F C K there is a finite codimensional 

subspace H C_ X such that for each h E H, II h II --> ~, we have II x + h II > II x II + ~ for 

each x @ F. 

PROOF. Let x. E K  and h. E f;1(0) where f. supports B(0,11x~ at x., i.e., 

Ill. II = 1 and f . ( x . )  = IIx. II. First we will show that if IIx. + h.  112-IIx~ 112-->0, then 
h.---~0. We may assume x.---~xo~O. Then 

0_-< 211xoll = + 21Ix. + h.  II 2-11go+ x. + h, II 2 

--< 211Xoll= + 21Ix. II 2 -  Ifoix,, + x. + h . ) l  2 + 21Ix. + h. II = -  21Ix. II = 

< 211 xoll  = + 21Ix. II 2 - 121Ix~ II - II x~ - Xotll: + 211 x~ + h.  I1:- 21Ix. II 2. 

So, l im(211Xoll2+211x.+h, l l 2 -11Xo+X.+h .  ID---0. Thus ,  by LUR, 
IIx.  + h .  - xoll--,0 and,  consequently, h, -->0. 

Therefore, we have that for every e > 0  there is ~ > 0  such that x ~ K, 
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h E f~' (0) where f, supports B (0,11 x II) at x, [I h [1 ~ e implies Ill x + h 1[ - [Ix [[[ => & 

Further, since I lx+hll>-fx(x + h ) = f , ( x ) = l l x l [ ,  Ilx+hll>=llxll+& The proof 
can now be finished easily. 

The following lemma is similar to lemma 2.2 in [21]. 

2.3 LEMMA. Let I1"11 be an LUR norm on X and let ~b :X---~R be such that 

4) (0) = 0 and qb ' is locally uniformly continuous on X. Assume X is not US and set 

= { F C X :  card F < o o  and q~(x)=<llx II for all x E F}. For F ~ ~, let 

O ( F)  = { h ~ x : ll h ll <= ~, 4) (x _+ h)-_<[I x +- h ll for each x E F} . 

Assume K C_ X is compact. Then there exists a 8K > 0 such that for every F C_ K 

such that F ~ ~; there exists h ~ Q ( F )  such that 11 h ]} => ~K. 

PROOF. For each x E K there is e, > 0 so that ~b' is uniformly continuous on 

B(x, e,). Then K C_ U?=l B (x~, e x,/2), x~ E K. Let e = min{e 2, :i = 1 , . - . ,  m }. For 

x E K, th' is uniformly continuous on B(x,e/2)C_B(x, ,ex,) ,  for some i. Let 

F = {y l , " "  ,y,} _C K, F E ,~, and consider the function 

~b(h) = ~ ([~b(y, + h ) -  6(y,)]2 + [,~(y, - h ) -  ~b(y,)]2). 
i = 1  

Then ~'  is uniformly continuous on ]]h]l< e/2. By Lemma 2.2, for K, F and 

e > 0 as given, there exist 0 < 8 < e and a finite codimensional subspace H C X 

so that []x + h H >[]x I] + ~ for each x ~ F and each h E H, II h II > e. 
Suppose that for each h E H, e/4 < ]] h ]] < e/2, we have 6(h)  > 8~. Then if z is 

a C~-function on R such that ~ ' ( t )=0 for [t{_->8 2, ~'(0)= 1, then ~-o~b has a 

uniformly continuous differential on B(O,e/2), z(~b(0))= 1 and ~-(~(x))= 0 for 

x e H,  e /4  < II x II < e/2.  Setting ~- o ~ = 0 for II x II --> e /2  we obtain a function on H 
with bounded support and uniformly continuous differential. Since X = H O H1, 

d imHl < ~, we can construct such a bump function on X which contradicts the 

assumption that X is not US. Thus, there is ho E H, e/4 < ]] h0]] < e/2 such that 

~b(h0)_- < 8 5. Then 

qb(y, +h0)=< ~b(y,)+~ ----IlY, II+ ~ ----IlY,---hll for each y, E F .  

So ho E Q (F) and ~K > 0. 
We note that a similar result can be proved for Lipschitz smoothness. 

PROOF OF PROPOSmON. (We will prove it for the US case; the other case is 

similar.) Let I1"11 be an LUR norm on X no subspace of which is isomorphic to co, 

and let 6 : X ~ R ,  6 ( 0 ) =  0, 6 ( x ) =  3 for IIx I I -  -> 1 and 6 '  is locally uniformly 
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continuous.  Assume X is not US; we will obtain a contradict ion using a 

technique int roduced in [4] and [13] and used in [21]. 

A sequence {h.} C X is constructed inductively such that ~(Y,L, ,e ih , )= < 

IlY~'_oe, h, II for  each n = 0 ,  I , . . .  and each choice of e, = -+ 1, as follows: h , , = 0  

and if h o , ' " , h ,  have been constructed put F,. = {EL.eih~ :ei = +-1} . Choose  

h.~, E O(F.) ,  by Lemma  2.3, so that h . , ,  >~sup{llhl l :h  E O(F,)}.  

Now, if IlZ~'-oe, hi[l<: 1 for each n and each choice of e~ = -+ 1, we obtain a 

contradict ion.  For, since no subspace of X is isomorphic to co, by a result of 

Bessaga and Pelczynski ([1], cf. [17], p. 98), Zhi is uncondit ional ly convergent .  

Hence  the partial sum {Y&. e,h, : n = 0, 1,. �9 e, = -- 1} is relatively compact .  So, 

by Lemm a  2.3, 

inf II h. II--> { inf sup{ll h [l: h E Q(Fo)} > 0 
n 

n 

which contradicts  the convergence  of Y.h~. 

On the o ther  hand, suppose that for some n and some choice e,, 115;r_ ,, E, h, [I > 

1. Let  n be the first integer such that IlZ~'_,,t?,h, II > 1 for some choice i,. Then  

1[ Z~'=~ g, h, II =< 1 and, since II h, 11 < ~, 11Y%,, gi hi II < 1 + �89 < 3. Thus,  r (Y,~'=,, t~i hi) =< 

IlY-%,,~ih, II < 3 which contradicts that 6 ( x )  = 3 for IIx II = 1. 
The  following lemma presents  a Lipschitz variant of the Banach-Smul ian  

character izat ion of smooth points on the unit sphere of a Banach space. 

2.4 LEMMA. For y E X let fr denote a support functional of B (0,11Y II) at y. For 

each x E X, IIx II = 1, the following are equivalent: 

(i) There is C > 0 such that for all h E X, 

IIx + h II-  IIx I I - f ~ ( h )  <= Cl] h I! 2. 

(ii) There is C > 0 such that for h E X, 

II x + h II + II x - h II - 2 II x II --< Eli h II 2. 

(iii) There is C > 0 such that for g E X*,  II g II =< 1, 

Ilg - f ,  II--< C(1  - g ( x ) )  "~. 

(iv) There is C > 0  such that for y E B ( 0 , 1 ) ,  

Ill, - f, II---- CIIx - y l l .  

(v) There is C > 0  such that for y E X  and g ~ 8 ( ~ l l - I D ( y ) ,  IIg-f,  ll---- 
C II x - y II, where 8('~11" II~)(y) denotes the subdifferential 4 ~11" II = at y. 

(vi) There is C > 0 such that for all h E X, 
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II x + h II 2 + II x - h II 2 - 2 II x II 2 < C II h II 2. 

PROOF. The equivalence of (i) and (ii) is standard. To show that (i) implies 

(iii), let gEX*.  If h@X, I lh l l= l  and t > 0 ,  then t(g-fx)(h) = 
g(x +th)-Ilxll-f ,( th)+ l -g(x )<l lx  +thll-Ilxll-f,(th)+ l - g ( x ) <  Ct2+1 
-g(x),  by (i). Hence, 

IIg - h  II ~ i n f {C t  + t -' (1 - g(x)):t > o} 

= c " ' d  - g ( x ) )  ''2. 

(iii) implies (iv), for, if y E B(O, 1), then, by (iii), 

IIf, - f ,  II~ c ( 1  -fy(x))'/z~ c (1  - / y ( x ) +  II y II-  f,(y)), ,2 

= c ( ( f ,  - f , ) ( y  - x ) ) " ~  _-< c It f~ - f~ fl ':=" II y - x 11":. 

If y = 0, then (v)follows immediately from (iv). If y ~ 0 and g E ~ dll. lib(y), 
then g Ily I I - ' e  ~(11 II)(y Ily I1-'). Thus,  assuming (iv), 

II g II y II-' - fx I1 --< c II y II y I1-' - x II < c ( l l  y - x I1 + II y II y I1-' - y II) 

= c ( l l y  - x  I1+1 Ily [I-  1 I)---- 2C[ ly  - x l l .  

Further, II g - g II y It-'ll = II g I1" II y I1-'(I II y I[ - 1 I) = I [I y It - 11 --< 11 y - x II. Thus,  
II g - f ,  II --< II g - g II y I1-' It § II g II Y I1-' - f~ II --< ( 2 C  § 1)11 y - x II, and (v) obta ins .  

To show that (v) implies (vi), fix h E X. By the mean value theorem, there is 

0-<_ t <_- 1 and g E ~(~'11" 112)(x + th) such that IIx + h II 2 -  IIx II 2 = 2g(h).  By (v), 

Ilx + h II 2 -  Ilx II 2 -  2f. (h)  = 2(g -f~)(h) <- 21lg - f ,  II" Ilh II--< 2CII h II 2. The same in- 
equality holds for - h  and adding the inequalities we get (vi). 

Finally, (vi) implies (ii): 

Ilx + h II+[Ix - h II--< (21Ix + h 112+211x - h l l b  ''2 

=< (4 II x II 2 + 4 c II h I1') "2 ~ 2 II x II + 2 C II h II 2. 

2.5 DEFINITION. (a) / : X - - ~ R  is said to be twice Gateaux differentiable at 
x E X  if 

(i) / ' (y)h,  the first Gateaux differential, exists, is linear and continuous in h 
for y in some neighbourhood of x; 

(ii) f"(x)(h,k)=lim,__.o(1/t)[f'(x +tk)h - / ' (x . )h ]  exists for each h, k E X  
and is a continuous, bilinear, symmetric form in h and k. 

(b) x E $1 = {x E X :llx H = 1} is called a Lipschitz smooth point of $1, if any 
one of the conditions in Lemma 2.4 is satisfied. 
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The following theorem is implicitly contained in [24], [23] and [21]. For sake of 

completeness and because it represents a basic technique of proving a smooth- 

ness characterization of spaces isomorphic to Hilbert space, we present a proof 

(based on one in [21]) of this result. We will need the following lemma from [21, 

lemma 2.2]. 

2.6 LEMMA. Let H be a finite codimensional subspace of X. Then there is a 

finite codimensional subspace G C_ X* such that for each g E G there is x E H, 

x ~ 0, such that g (x )  > Ill g II" II x II. 

2.7 THEOREM. Assume that there is a Lipschitz smooth point Xo E $1. Further, 

assume that the dual norm on X* is twice Gateaux differentiable on the unit sphere 

in X*.  Then X is isomorphic to a Hilbert space. 

PROOF. Suppose that the assumptions obtain and that X is not isomorphic to 

a Uilbert space. Let th(x)= II x II on x and ~b(x*)= lex*ll on X*.  For x ~ X* 

such that x~(Xo)--1, IIx~,ll=l, define n=(~'(Xo))'(0)n(x~)-'(0)cx. By 
Lemma 2.6, there is a finite codimensional subspace Gt _C X* such that for any 

g E G ~  there is a nonzero x E n  such that g(x)>~llgll . l lxlt .  Let G = 

G, N ~b'(x*) ~(0) N xo' (0) _C X*. Since codim G < ~, G cannot be isomorphic to 

a Hilbert space, by our assumptions on X. 

Thus, inf{l~b"(x*)(g,g)[:g E G ,  IIglI= 1}=0, for otherwise, ~b"(x*)(g,g) 

would yield an equivalent inner product norm on X, a contradiction. Since x0 is a 

Lipschitz smooth point of S,, there is C > 0 such that for each t E R, h E X, 

(1) ck(xo + th ) -  c~(xo)- c~'(Xo)(th ) < crll h II ~. 

Choose g E G ,  g~O,  such that ~o"(x*,,)(g,g)<(1/lOOC)llgll 2. By the Taylor 

formula, 

(2) qJ(x * + tg) = ~b(x *) + ~'(x *)(tg) + �89 d/"(x *)(tg, tg) + tr(t), 

where lim,_.o[tr(t)/t 2] = 0 and the derivatives are taken in the Gateaux sense. 

Choose h ~ H with IIh II = (1/lOC)llgll and 

= 1 g(h)~llgll'llhll 3--0-~llgll 2. 

By (1) and (2), we obtain 

1_ t2llgll2+~r(t)" IIx~ + t'-llgll2lOOC and IIx* +tgll<l + 2.100C 
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Thus, we have 

,2 1 < l+t211g 3 - ~ = l + t 2 g ( h ) = ( x * + t g ) ( x ~  

3 
= 1 + 2---~0- ~ t~lfgll2+ o-,(t) 

where lim,_.o[~r~(t)/t 2] = 0. This is a contradiction and the theorem is proved. 

The next theorem is a variant of Lindenstrauss' result ([16]) on the density of 

smooth points on the sphere of certain spaces. 

2 .8  THEOREM. (Lindenstrauss) I[ (x, ll, II) is reflexive and admits a norm [. I 
for which all of the points of its unit sphere are Lipschitz smooth points, then the set 
of all Lipschitz smooth points of the original unit sphere St is dense in S~. 

PROOF. Using Lemma 2.4 above, follow the proof of theorem 3 in [16]. 

2.9 COROLLARY. lp (N), 1 < p < 2, does not admit an equivalent twice Gateaux 

differentiable norm. 

PROOF. Let q satisfy 1/p + 1/q = 1. The usual norm on lq(N) has modulus of 

smoothness p(~-)_-< C~ 2, so, by Lemma 2.4, all the points of the unit sphere in 

lq (N) are Lipschitz smooth. Now assume there is an equivalent twice Gateaux 

differentiable norm on lp(N). By Theorem 2.8, the corresponding dual unit 

sphere has Lipschitz smooth points and, by Theorem 2.7, lp(N) is isomorphic to 

Hilbert space which is a contradiction. 

3. Main results 

3.1 THEOREM. Assume that X is a separable Banach space which admits a 

differentiable norm whose differential is locally Lipschitz on the unit sphere S~. 

Then X admits a twice Gateaux differentiable norm whose first differential is 

locally Lipschitz on St. 

i 1 PROOF. Let 4 , o : R ~ R  be a C~-function, 4,0_->0, even, 4,0-=0 outside [-2,2] 

and fR4,o = 1. Let 4,~(t)=2"4,o(2"t) for t E R  and let {hi}, i = 0 , 1 , 2 , . . - ,  be a 

dense sequence in $1 C_ X. Now define a sequence {/,} of functions on X by: 
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= f.  .... 
for n = O, I, 2,.... 

[o(x ) = [I x 112, 

This sequence of functions has the following properties: 
(i) Each .f. is a convex and continuous function. This is an immediate 

consequence of the facts that fo is convex and ~. _-> 0. 
(ii) There is a function f :  X--~R such that ]'. --*[ uniformly on bounded sets, [ 

is Frechet differentiable with a locally Lipschitz differential and 

f'(x)(h)=lim f,.., f ~ ( x -  ~ t~hi)(h)" f l  ,=o for x, h ~X.  

To see this, let m >= n and consider IIx I[-<- ~. Then, 

If , ,(x)-f .(x)l  

= f, . . ,  [f"(x-~=,t'h')-f~176 I 

j ~. t,h, ( tl ~=o 1] ]l ,=~o l )  f l  --< 211xll+ t,h, + t,h, q~, ( t, )dto . . . dt,. 
t i l ~ l / 2 ' '  n+ i--O 

<= (2r + 2)/2". 

Thus, by the Cauchy criterion, f. ---~[ uniformly on B(0, r), for some [ :  X ~ R .  

Now, f'.(x)h = f, . . ,Fj(x - Y.?=ot~h,)(h)IlT'=o4a,(t,)dto... dtm for each x, h ~ X. 
Since U~=, {Y..~=o t~ h, :l t~ I =< 1/Z+'} is relatively compact and f~ is locally Lipschit- 
zian, it can be seen that for each x0 E X there is &o > 0 such that f~ is Lipschitzian 
on B ( x , , 6 J -  U~_, {s2~=,,t,h, :l t~l =< I/2'+'}, with Lipschitz constant C~ o. There- 
fore, as above, if x, y E B(xo, 8,~), 

I ( f ' ( x ) - . f ' ( y ) ) h  [ = < ( . §  c,,llx - y II 4~,(t,)dto'" dtm 
J R  i = o  

= c llx - y II. 

Finally, if x EB(xo,8~), m >=n and Ilhlt_-< 1, then 

I[(f ' (x '- f"(x))hl '< fa-., C'~ ,=,+, s t'h'll ,-0 f l  cb(t,)dto...dt,,---~O 

uniformly on B(xo,&~) as n, m --.oo. So f'(x)h exists in the Fr6chet sense and is 
locally Lipschitzian in X. Moreover, 
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f'(x)h =l im fn.4, f~(x-  i=o ~ t,h,)(h)~I,=o ~bi(ti)dto...dt.. 

(iii) f is a twice Gateaux differentiable function on X. 

Let 0 - i = < n  be fixed, h, x ~ X  and m_->n. Then 

~-.olimfj R ' §  l ,=o 

= lim,,_..o JR-*,I 1[ . . . . .  (t~-a)h~ . . . . .  tmh,.)h 

- f~(x -  ~t'h')h] ,=o 

= l i m f  f~(x- ~ t,h,)(h)cko(to) "''(~'(t'+a)-q~'(t')) 
a--+O J g  ~ " l i - O  Ol  

�9 $,+, (t,+l)... ~,, ( t , . )ato. .-  arm 
m 

Using an argument similar to that in (ii) above, we see that 

,im f,.. ,~(x- ~.ot, h,)(h,cko(to)'"ck',(t,)'"qbm(t.)dto'"dtm 

exists uniformly for x EB(xo,~o), Ilhll-- < 1, for fixed i. Thus, for each x E X ,  

i E N  and hEX, 
rt  

f"(x)(h,h,)=limlR~, f~(x- i~=otihi)h~o(to)'"qb~(ti)";qb.(t.)'dt,,'"dt.. 

Further, since the Frdchet differential f '  is locally Lipschitzian and {hi} is a dense 

set of directions, f"(x)(h,k)=lim,f"(x)(h,k,) uniformly on []h[[_-<l and 
x E B (Xo, 6~0) whenever k, --~ k. Also, since f"(x) (h, k, ) is locally Lipschitzian in x 

for each i, f"(x)(h, k) is, for h, k fixed, continuous in x. Thus, f"(x)(h, k) is, for a 

fixed x, a bounded, symmetric, bilinear form in h, k. 
(iv) Let q be the Minkowski functional of the set Q = {x E X : f(x) <= 16}. We 

claim that q is an equivalent twice Gateaux differentiable norm on X. 

This follows, since if I[xH>5, then f ( x ) > 1 6 .  Also f ( 0 ) < 1 6  and f is a 
continuous, convex function. Thus, q is an equivalent norm on X. Further, if 

l[ x [I > 5, then f'(x)(x) > 12 and f ' ( -  x ) ( -  x) > 12, since, setting a = E~=ot~h,, we 

have II a II < 1 and, for 0 < a < ~, 
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~-(ll (1 + of)x - a tl 2 -[Ix - a II 2) 

-- • + o f )x  - a I1 + IIx - a tl)(11(1 + o f )x  - a II-  IIx - a II) 
of 

->_ 4 (11(1 + a ) x - a I I -  II x - a II) = 4 (11(1 + c, ) (x  - a ) + of a I I -  II x - a II) 

___ 4 ( ( 1  + ~)11 x - a II - of II a II- It x - a II) = 4(llx - a II-  II a II)--> 12. 
of 

Hence 

271 

Let  G ={x E B ( 0 , 1 ) : q , ( x ) <  -�89 

n 

> 1 2 .  

Similarly, f ' ( - x ) ( - x ) > - - 1 2 .  Thus, by the implicit function theorem, we have 

- I  
, X X r X 

When restricted to finite dimensional subspaces, f"  exists in the Frechet sense 

and is continuous. Thus, it follows that q has a second Gateaux derivative on 

X\{0} and q' is locally Lipschitzian on the sphere. 

We note that "locally" can be dropped in the hypothesis and conclusion of 

Theorem 3.1. 

In the sequel we will need the following. 

3.2 THEOREM If X is US (resp., LS), then X admits a differentiable norm 
whose differential is uniformly continuous (resp., Lipschitzian ) on the unit sphere. 

PROOF. Assume that X is LS. (The proof for the case when X is US is 

similar.) Let 4' :X--~R be ditIerentiable and symmetric, with 4'' Lipschitzian, 

< inf 4' = - 1 = supp 4' C = 4' = 0 ,  4'(0) and _ B(0,~). Then 211x11-2< 4,(x). Define, 

for t > 0, 

to,(t)  = sup{ qb(x + h )+ ~l(x - h ) - 2 4 ' ( x ) .  x EX,[ lh i l< t I 
h t l  " " 

Let $ 'B(0,1)---~R be defined by 

~ ( x ) = i n f  ~ ; o f , 4 ' ( x , ) : ~ , x , - - x ,  of, e 0 , ~ ,  = 1,x,  e B ( 0 , 1 ) , n  e N  . 
i = l  
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We claim that ~O has a Lipschitz differential on G. To see this, let x E G, 

h E X ,  Ilhll < , ' ,  h ~ 0  and 0 < e  < - ~ -  if(x) be given. Let x, E B(0,1), ai =0 ,  

ET_,a~=l be such that Y4~,,~,4,(x,)<q,(x)+EIIhll<-~ and assume that 
~b(x,)<0, i = 1, 2 , . . . , k  and 4~(x~+]) . . . . .  d~(x,)=0. Then 

k k 

_1> E ,,,~(x,)>- E ,,,, 
i=1  i = l  

so 1 _>- a = E~=, a, = 12 and 

Thus 

~b(x + h ) +  ~b(x - h ) -  2~b(x) 

<=~ot, x,+--h + x , -  h - 2  o~,6(x,)+2ellhll 

= .=~ ot,[~b(x, + 1  h ) +  ~b(x, _ 1  h)-24~(x,) ]  + 2ellh]l 

Since e > 0 was arbitrary, 

~b (x + h) + ~b (x - h) - 2~b (x) < 2to, (2 II h II)" II h II --< c II h II 2. 

This implies the existence of ~b'. 

Now, to substantiate our claim, let x, y E G, 0 < IIx - y II < .  be given. Then for 

h~X, I l h l l = l l x - y l l ,  x+heB(O,  1), y - ( x + h - y ) ~ B ( O ,  1) and, by 
convexity, 

( 6 ' ( x ) -  ~b'(y))(h) = < ~b(x + h ) -  ~b(x)- ~O'(y)(h) 

= ~(x + h ) -  ~O(y)- 6 ' (y)(x + h - y ) +  6 ( Y ) -  6 ( x ) +  6 ' (y)(x - y) 

_- ~b(x + h ) -  ~b(y)- ~ ' (y)(x + h - y) 

=< ~O(y + (x + h - y ) )+  ~b(y - (x + h - y ) ) -  2~b(y) 

_-< 2,,,,(211x + h - y II)11 x + h - y II-- 4to,(411x - y II)11 x - r II. 

By taking the supremum over all h E X, lib II = I I x - y  II, we obtain that, for 

x, y ~ G, 0 < l l x  - Yll<~, 
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I[ -  '(y)ll ~ 4 w ,  (4 [[ x - y [[) < c 1[ x - y [[. 

Let O = {x E B(0, 1): ~0(x) _-< - .~} and let q be the Minkowski functional of O. 

Then q(x )+  q ( - x )  is an equivalent norm on X and, using the properties of ~b 

and that for q ( x ) =  I, 

g / ( x  ) ( x  ) >-_ 4,(x ) - 44o)  = ~', 

we can complete the proof as in Theorem 3.1. 

3.3 THBOREM. Either of the following conditions (i) or (ii) implies that X is 

super-reflexive : 

(i) X is LUS and no subspace of X is isomorphic to c.. 

(ii) The norm on X has a locally uniformly continuous differential on X \{0} and 

the unit ball of X has at least one strongly exposed point. 

PRoof'. (i) Every non-super-reflexive space contains a non-super-reflexive 

separable subspace, so it is sufficient to consider separable X. Now each 

separable X admits an LUR norm, so the result follows from Proposition 2.1 and 

Theorem 3.2. 

(ii) Assume x,~ is a strongly exposed point of B(0, 1) and let I[']1' be uniformly 

continuous on B(xo,e) .  Let H={h@X:Hx . l l ' ( h )=O} .  Since x,, is strongly 

exposed, there is 6 > 0  such that for h E H ,  [[hll>e, we have fix +hl[=> 1 +6.  

For h E H, let 4' (h) = [[ xo + h [] + [[ x , , -  h ][- 2. Set O -- {h E H : 4' (h) _-< 6/2} and 

let q be the Minkowski functional on B(x,,, e). As in Theorems 3.1 and 3.2, we 

can see, by the implicit function theorem, that q is an equivalent norm on H with 

uniformly continuous differential on its unit sphere. Thus, there is such a norm 

on X, so X is super-reflexive. 

Analogously, one obtains a Lipschitz version of Theorem 3.3 which we state 

without proof. 

3.4 THEOREM. Either of the following conditions (i) or (ii) implies that X 

admits an equivalent norm with a Lipschitz differential on its unit sphere : 

(i) X is separable, LLS and no subspace of X is isomorphic to c,,. 

(ii) The norm on X has a locally Lipschitz differential on X/{0} and the unit 

ball of X has at least one exposed point. 

Condition (ii) in the above theorems should be compared with [3] where a 

similar result is proved for uniform convexity. 

Some of the above results can be summarized in the following. 

3.5 THEOREM. If a separable Banach space X is LLS and no subspace of X is 
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isomorphic to Co, then X admits a twice Gateaux differentiable norm the first 

Fr~chet differential of which is Lipschitzian on the unit sphere. 

3.6 COROLLARY. If X i~ LLS and no subspace of X is isomorphic to Co, then X 

is of  type 2. 

PROOF. If X is not of type 2 it contains a separable subspace not of type 2. 

Thus, it suffices to use Proposition 2.1 and Theorem 3.2 and the result of Figiel 

and Pisier ([8]) stating that X is of type 2 provided the differential of a norm on 

X is Lipschitzian on its unit sphere. We take the liberty of giving a shorter proof 

of their result. 

Suppose that II'II' is Lipschitzian on the unit sphere, that is, by the uniform 

analogue of Lemma 2.4, there is C > 0 such that for each x, y ~ X we have 

II x +yl(-+ll x -yll2~2llxll2+2Cliyll 2. 

We claim that, for each n and each h~, h2,...,h, ~X, 

e,h, <= 2" llh,ll2 + 2"C 211h, II 2. 
e i =-+1 i = l  i = 2  

Indeed, suppose that the estimate is true for numbers up to n. Then 

= ~ eih, + e,h, - h . . ,  
f i ~ •  i = 1  •z-*- 1 i = 1  i = 1  

It t <= 2 2 e,h~ +2Ctlh , , , l l  2 

~ el hi z = 2  ~. + 2"*' Cllh.+,ll ~ 
e i ~ l  

-< 2.2" II h,l12 + 2 ~ " C  ~ IIh, 11~+2 ~ Eli h~ 
i = 2  

n t l  

= 2"~'llh,ll~ § 2"+' C ~ IIh, II ~. 
i = 2  

3.7 COROLLARY. If  X and X* are both LLS, then X is isomorphic to a Hilbert 

space. 

PROOF. By a result of Bessaga and Pelczynski ([1], see [17], p. 103), if X* 

contains a subspace isomorphic to Co, then X contains a complemented subspace 

isomorphic to l,. Since l, is not LLS ([15], [2]), we see by Corollary 3.5 that both 

X and X* are of type 2. Our result now follows from Kwapien's characterization 
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of  spaces isomorphic  to Hilbert  spaces, namely,  spaces X such that  X and X *  

are both of type 2. 

REMARKS. (1) Corol lary  3.6 generalizes Meshkov ' s  result [21] that if X, X*  

both admit  C2-bump functions then X is i somorphic  to Hilbert  space. 

(2) By Proposi t ion 2.1 and T h e o r e m  3.2, there is no L U R  norm on co with 

locally uniformly cont inuous  differential on  the unit sphere.  Thus,  in general ,  no 

averaging result, like Asplund ' s ,  which holds for C ' - n o r m s ,  can be expected for 

C2-norms. Therefore  the result of [22], which states that there is an L U R  norm 

on Co which is a uniform limit of C~-norms,  cannot  be s t rengthened,  in some 

sense. 

(3) If p > 2 ,  then X = (Z~=tGIT,)~ is an example  of  a Banach space whose 

norm is Lipschitz differentiable ([8], [9]) and which cannot  be r eno rmed  with a 

C2-norm. The  latter fact can be proved using the methods  used in [20]. Thus,  

Theo rem 3.1 cannot  be s t rengthened to show the existence of a C2-norm. 

(4) In [12] James const ructed  a nonreflexive space X of  type 2. By T h e o r e m  

3.3, this space is not an LUS space. 
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